US005835784A

United States Patent [(1] Patent Number: 5,835,784
Gillespie et al. 451 Date of Patent: Nov. 10, 1998
’

[54] SYSTEM FOR BOOTING PROCESSOR 5,450,576 9/1995 Kennedycocoveeereeerecereces 395/652
FROM REMOTE MEMORY BY 5,497,497 3/1996 Mi!.ler et al. .o 395/651
PREVENTING HOST PROCESSOR FROM 2232% ;ﬁggg 5611 et at1~ s ;ggggg
CONFIGURING AN ENVIRONMENT OF i OUDG ELAL ovvvvrrrrvinssinnss
PROCESSOR WHILE CONFIGURING AN Bl oo Belly o 3657%?125

,580, ryg et al. i
INTERFACE UNIT BETWEEN PROCESSOR 5,590,377 12/1996 Smith ...cccccocevenvvnciieninncane 395/842
AND REMOTE MEMORY 5,603,051 2/1997 BZZEL wrooovooeeeeeeeooeesreeeee e 395/322
[75] Inventors: BerIl Gi.llespie, PhOCl’liX, AI'IZ, Bruce Primary Examiner—Thomas C. Lee
Young, Tigard, Oreg. Assistant Examiner—David Ton
Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &

[73] Assignee: Intel Corporation, Santa Clara, Calif. Zafmany & ¥ Y

[21] Appl. No.: 611,802 [57] ABSTRACT

[22] Filed: Mar. 6, 1996 A method and system for booting a ﬁrst.processor from a

remote memory. In response to a reset signal, a processor
Related U.S. Application Data which has no associated local memory is prevented from
executing code and particularly its boot sequence. Because

[63] Continuation-in-part of Ser. No. 490,778, Jun. 15, 1995, Pat. the first processor is prevented from initializing its
No. 5,696,949. environment, configuration cycles from a host processor

[51] It CLE e, GO6F 15/177 should be prevented from configuring that enviyonment until

[52] US.Cl 395/830; 395/652 the first processor has booted. By preventing the host

S Cle o ; processor from configuring, the first processor environ-
(58] Field of Searglgl 5/842822651280 ?;Zg/ 675121’ /gg% ment’s integrity is protected. Because the first processor has
> > i 123. 3,6 5/230 02’ no local memory, address cycles generated to access local
i) memory would normally go unclaimed on a local bus. An
[56] References Cited interface between the local bus and the remote memory is
configured to claim the local memory address range from the
U.S. PATENT DOCUMENTS local bus. Once the first processor is enabled, the local
4679166 7/1987 B Cal 305/652 memory addresses are used to access the remote memory to
,679, erger et al. .o
4943911 7/1990 Kopp et al. " 39s/65y Teturn the necessary boot code.
5,247,629 9/1993 Casamatta et al. ... 711/206
5,335,329 8/1994 Cox et al. oceveeeevecrierernnn 395/282 14 Claims, 4 Drawing Sheets
LOCAL 30|q 12
PROCESSOR 34 LOCAL 50
<! [> MEMORY
58 5 | LOCAL 40|q 1
ATU ATU |56 PROCESSOR {44
55 /) 57
39 5481 |/ - I| m I >
L) ; [51 68 |/
AT ATU (66
38| |BRDGE 22 % s v 65| —V |6
P < 5 N\ 49 64741 ¥
87 /36 [} [}
__..L__> 16 [61
A
(48 BRIDGE 42 4 tsz
. <%
47 46 Y

U.S. Patent Nov. 10, 1998 Sheet 1 of 4 5,835,784

: HOST CHASSIS 1|

|
| 5 6 2 |
| CcPU MEMORY |
| |

|
| al |
l BUS |
| L 10 10 |
l] BRIDGE ?[% |
| ™ Z 11 2 |
| I é % |
| PCl 5’ i . :
: 13 15 |
| 12 |

| EXPANSION CHASSIS |
: 8-12 PCI SLOTS @ 25MHz :
| TS LIAAIIIASTSS,]
| AL AT, |
| [' 18 18 |
| AT, - |
| T |
A A, CLOCK
I LA A GENERATOR '
| SIS . |
I TSI, I
| A |
| A AR |
| A |
| SEB |
: ol SO
| SEC 17 [
| CONNECTOR |
e e e e e o e e e e e e e e . e e e — — — — -l

U.S. Patent Nov. 10, 1998 Sheet 2 of 4 5,835,784

SIGNALS |PINS DESCRIPTION
AD[0:31] | 32 [|STANDARD PCI MULTIPLEXED ADDRESS/DATA LINES
C/BE[0:3]# | 4 ||STANDARD PCI MULTIPLEXED COMMAND/BYTE ENABLE LINES
FRAME# | 1 || STANDARD PCI FRAME# LINE
IRDY# 1 || STANDARD PCI IRDY# LINE
TRDY# | 1 ||STANDARD PCI TRDY# LINE
DEVSEL# [1 || STANDARD PCI DEVSEL# LINE
STOP# | 1 ||STANDARD PCI STOP# LINE
LOCK# | 1 |[STANDARD PCI LOCK# LINE
PERR# | 1 |STANDARD PCI PERR# LINE
SERR# | 1 |ISTANDARD PCl SERR# LINE
RESET# | 1 |t STANDARD PCI RESET# LINE
PAR 1 [[STANDARD PCl PAR# LINE
REQ# 1 || SEB REQUEST TO PEB FOR USE OF THE SEC.
GNT# 1 || PEB GRANT TO SEB USE OF THE SEC.
SINT# 1 || SERIALIZED INTERRUPT LINE (NOT STANDARD PCl)
CLK 1 || SEB GENERATED CLOCK TO PEB FOR USE WITH THE INTERFACE SEC.
TOTAL | 50

Fig. 2

5,835,784

Sheet 3 of 4

Nov. 10, 1998

U.S. Patent

¢ 31y
A
9y -
N g B J
\ / gF 39alg g
o/ I Y ﬂﬂw_ o
/7 ¥ |vo/ %
/9 [] moﬁo
99| n1v nLy
- 89
e
4 \ _ >
by H0SS3004d
&1 — ™5y vO01
AHOWIW
06 001

v oc/ 5/ |
> > ‘>
AT\ & 3oawa| |s
ST [
d €] Jio/ 3
LS i mm?m
95| NLV nLy
A 8
e¢
- >
) _
B0SS3908d
- —®I5 001

U.S. Patent Nov. 10, 1998
0000.0000h 5
0000.04001 INTERNAL DATARAM 100

RESERVED 101
0000.0800h
PERIPHERAL MEMORY 102
MAPPED REGISTERS
0000.1000h e
ATU OUTBOUND
DIRECT ADDRESSING
WINDOW
/
/
/
8000.0000h
104
ATU OUTBOUND
TRANSLATION WINDOWS
9002.0000h E
\
\
\
| __ _EXTERNALMEMORY _ _ |
FE00.000n CODE/DATA AN
N
B
FEFF.FF2Fh %
INITIALIZATION BOOT RECOR
FEFF.FF60h =
RESERVED 107
FF00.0000h %
80960 JX PROCESSOR MEMORY- |
MAPPED REGISTER SPACE /
FFFF.FFFFh

Sheet 4 of 4 5,835,784

104
\

8000.0000N 109
PRIMARY MEMORY WINDOW
83FF.FFFFh

8400.0000h 110
PRIMARY DAC WINDOW
87FF.FFFFh

§800.0000h 111
SECONDARY MEMORY WINDOW
8BFF.FFFFh

8C00.0000h 112
SECONDARY DAC WINDOW
8FFF.FFFFh

9000.0000h 118
PRIMARY /0 WINDOW
9000.FFFFh

9001.0000h 114
SECONDARY 1/0 WINDOW

9001.FFFFh

SECONDARY BOOT
TRANSLATION WINDOW \

121

Fig. 4

5,835,784

1
SYSTEM FOR BOOTING PROCESSOR
FROM REMOTE MEMORY BY
PREVENTING HOST PROCESSOR FROM
CONFIGURING AN ENVIRONMENT OF
PROCESSOR WHILE CONFIGURING AN
INTERFACE UNIT BETWEEN PROCESSOR
AND REMOTE MEMORY

This is a continuation-in-part of AN APPARATUS AND
METHOD FOR PROVIDING REMOTE PCI SLOT
EXPANSION, Ser. No. 08/490,778 filed Jun. 16, 1995, now
U.S. Pat. No. 5,696,949.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to booting a processor. More
specifically, the invention relates to booting a processor from
a remote memory.

2. Related Art

Intelligent input/output (I/O) processing has become
increasingly common. An intelligent I/O system implies that
in addition to a host processor, a lesser I/O processor is also
provided to handle various I/O tasks, thereby facilitating the
speed and efficiency of I/O operations. The I/O processor is
typically much lower in cost and processing power than the
host processor and is associated with a local memory which
is typically at least partially composed of read only memory
(ROM) in which the boot code for booting and initializing
the I/O processor is maintained. Among the processors used
as I/0 processors is the JF80960 manufactured by Intel
Corporation of Santa Clara, Calif. The JF80960 responds to
a reset signal by placing the local ROM address of its boot
code on the local bus. In response, the boot code is returned
from the ROM and the JF8960 initializes itself and config-
ures the local I/O environment. The processor and its local
memory are typically provided on an I/O card for insertion
into an I/O bus slot. Unfortunately, providing the local
memory on the I/O card significantly increases the cost of
the card. This is a concern as the market becomes increas-
ingly cost sensitive.

The peripheral component interconnect (PCI) bus is a
high performance low latency I/O bus architected to mini-
mize system cost. PCI has quickly gained wide acceptance
in the computer industry. The PCI bus standard provides for
a high bandwidth and a flexibility that is independent of new
processor technologies and increased processor speed. At
this time, computer system architects are primarily design-
ing speed sensitive peripherals such as graphics accelerators
and small computer systems interface (SCSI) drive control-
lers to be utilized with the PCI bus.

The PCI specification is well defined. See particularly,
PCI Local Bus Specification, rev. 2.0, Apr. 30, 1993. The
specification reflects that PCI is capable of running at any
frequency up to 33 MHz. This high level of possible
throughput makes PCI an ideal choice for volume servers.
Unfortunately, at such speed, the PCI bus can only support
3—4 slots along a single bus segment This number of slots is
unacceptably low for a practical application in the volume
server market. Some prior systems have addressed this
problem by cascading PCI buses on the host mother board.
Unfortunately, such cascading increases the cost of the basic
system and still fails to provide a level of slot expansion
necessary in volume servers. Moreover, such single chassis
systems are not readily expandable as the user’s needs
change.

The volume server market has yielded another limitation
not readily addressed by a single chassis system,

10

15

20

25

30

35

40

45

50

55

60

65

2

specifically, physical space. Stated differently, current pro-
cessors have enough processing power that a single proces-
sor can satisfy the processing requirements of more, for
example, SCSI drives than will fit within any single chassis.
Any time the number of drives exceeds this physical
limitation, it will clearly be necessary to expand out of the
chassis. As a practical matter, since each chassis is likely to
be provided with its own I/O processor, the cost of the
system could be significantly reduced if it were possible to
eliminate the local memory associated with at least some of
the I/O processors.

It is therefore desirable to be able to boot an I/O processor
from a remote memory, thereby allowing the elimination of
that I/O processor’s local memory which in prior art systems
would have contained the processor’s boot code. It is further
desirable to provide an apparatus which allows PCI slot
expansion without unnecessarily increasing the cost of the
host system. The performance of an expanded slot must be
maintained at an acceptably high level, and the system
should be readily expandable to meet the demands of
increasing processor power.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system employing one
embodiment of the invention.

FIG. 2 is a table of relevant PCI signals for one embodi-
ment of the invention.

FIG. 3 is a block diagram of the primary and secondary
expansion bridges of one embodiment of the invention.

FIG. 4 is a diagram of memory mapping for one embodi-
ment of the invention.

SUMMARY OF THE INVENTION

A method and system for booting a first processor from a
remote memory is disclosed. In response to a reset signal, a
processor which has no associated local memory is pre-
vented from executing code and particularly its boot
sequence. Because the first processor is prevented from
initializing its environment, configuration cycles from a host
processor should be prevented from configuring that envi-
ronment until the first processor has booted. By preventing
the host processor from configuring, the first processor
environment’s integrity is protected. Because the first pro-
cessor has no local memory, address cycles generated to
access local memory would normally go unclaimed on a
local bus. An interface between the local bus and the remote
memory is configured to claim the local memory address
range from the local bus. Once the first processor is enabled,
the local memory addresses are used to access the remote
memory to return the necessary boot code.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a method and apparatus
booting a processor from a remote memory. For the purpose
of explanation, specific details are set forth to provide a
thorough understanding of the present invention. Notably,
the invention is described in the context of PCI buses,
however, the invention could also be employed in the
context of other bus structures. It will be understood by one
skilled in the art that the invention may be practiced without
these details. Moreover, well known elements devices, pro-
cess steps and the like are not set forth in order to avoid
obscuring the invention.

FIG. 1 shows a block diagram of a system incorporating
the instant invention. The host system resides within a host

5,835,784

3

chassis 1 and includes a host mother board 3. The host
mother board has a central processing unit (CPU) 5 con-
nected to a memory 6 by a system bus 7. A bridge 8 is
provided on the mother board to bridge between the system
bus 7 and a host PCI bus 9. At 33 MHz, the PCI specification
only permits 3—4 slots 10 along a single bus segment. By
installing an expansion card 11 in at least one of the slots 10
on the host PCI bus 9, it is possible to expand the number
of slots of the system as a whole.

The expansion card 11 has a primary expansion bridge
(PEB) 12 described more fully with reference to FIG. 3
below, and a cable connector 15. In an exemplary
embodiment, a 100 pin cable connector is used. This allows
for sufficient signal conductors to accommodate parallel
transmission of all PCI required signals and adequate
grounding. The expansion card also provides an optional
advanced programmable interrupt controller (APIC) con-
nector 14 to allow the card 11 to be connected to the APIC
bus (not shown) on the host mother board 3. FIG. 2 is a table
of the relevant PCI signals. The cable 16 is selected based on
propagation speed down the cable 16 and cable slewing. It
is desirable to choose a cable 16 with minimal slewing and
with maximum propagation speed. The cable 16 functions as
a point to point PCI bus between the expansion side of the
PEB 12 and the secondary expansion bridge (SEB) 19 which
is described more fully below. The cable 16 should be well
terminated at either end with impedances approximately
equal to the characteristic impedance in the cable. In an
exemplary embodiment, a six foot high performance parallel
interface (HIPPI) cable with a characteristic impedance of
88+5 ohms is used. HIPPI cable meets American National
Standards Institute (ANSI) standards and includes 50
twisted pairs, thereby providing an adequate number of
signal lines. It would be possible to use a smaller cable and
lower pin count connector but such would limit possible
functionality somewhat.

The expansion chassis 2 contains an expansion mother
board 4 to which the cable 16 connects via connector 17. A
PCI bus runs from the connector to the SEB 19. The
clocking in the expansion system is provided by a clock
generator 18 which is asynchronous with and independent of
the host clock (not shown). The number of slots 21 available
on the secondary PCI bus (SPB) 20 is determined by the
speed of the clock signal generated. At 25 MHz, 8-12 slots
are available, while at 33 MHz, only 3—4 slots would be
available. It is possible and contemplated as within the scope
of this invention that multiple expansion modules could be
coupled to a single host (one card per available PCI slot). It
is also within the scope of the invention to cascade an
expansion module off an expansion module.

FIG. 3 shows a block diagram of PEB 12 as coupled to the
SEB 19 of the instant invention. Local processor 30 is
coupled to local bus 34 which is also coupled to primary
address translation unit (ATU) 39 and secondary ATU 31. A
primary ATU 39 is also coupled to the primary PCI bus 38.
The secondary ATU 31 is coupled to the secondary PCI bus
35. Secondary ATU 31 contains programmable bit 56 which
can provide a control signal to cause the ATU 37 to change
the address range claim from the local bus. Bridge 32
provides a PCI to PCI bridge between primary PCI bus 38
and secondary PCI bus 35. The bridge 32 issues local bus
reset (not shown) which resets the devices on the local bus

Primary reset 37 operates as an input signal to the bridge
32 which is passed through to become secondary reset 36
which is cabled over cabled bus 16 to become primary reset
47. Cabled bus 16 also connects secondary PCI bus 35 with

10

15

20

25

30

35

40

45

50

55

60

65

4

primary PCI bus 48. SEB 19 has the same basic structure as
PEB 12. Local processor 40 is connected to local bus 44
which in turn is connected to primary and secondary ATUs
49 and 41, respectively. The bridge unit 42 bridges between
primary PCI bus 48 and secondary PCI bus 45 and provides
the local bus reset 43 to the devices on the local bus. In one
exemplary embodiment, local bus 44 is also coupled to a
local memory 50. Local memory 50 includes at least some
ROM containing initialization code for local processor 40.
Local processor 40 initializes itself from the code in local
memory and then initializes the components on the local bus
44 in the usual way.

Two programmable bits 54 and 55 are programmed
responsive to primary reset 37 by sampling each of two
strapping pins while primary reset 37 is asserted. These bits
are set and cleared in memory cycles. A retry pin 51
programs the programmable bit 54 to indicate a retry con-
dition to the host until bit 54 is cleared. Core reset pin 52
programs programmable bit 55 to hold the local processor
30 in reset until cleared. It will be recognized by one of
ordinary skill in the art that the decision of whether to
set/clear to indicate, e.g., retry/no retry, the programmable
bits is a design decision and the inverse is within the scope
of the invention. Significantly, because the retry pin 51 and
the core reset pin 52 are only sampled when primary reset 37
is asserted, these pins can be multiplexed and used for other
functions the rest of the time. Since many integrated circuits
are pin limited, this pin “saving” is important.

In response to an assertion and deassertion of a reset
signal along primary reset line 37, the bridge 32 asserts and
deasserts secondary reset signal 36 which corresponds to an
assertion and deassertion of primary reset signal 47 and to
bridge 42. Additionally, the bridge asserts local bus reset
(not shown) which resets all devices on the local bus.
However, to prevent the local processor 30 from beginning
its initialization cycles, core processor reset 33 is maintained
asserted because bit 55 remains set. Local processor 40
begins initialization responsive to deassertion of local bus
reset signal 43. Thus, when reset signal 43 is deasserted,
local processor 40 will place the address of its initialization
code as located in local memory 50 onto the local bus 44.
Local memory 50 will then provide the necessary initializa-
tion routines across local bus 44 to processor 40 and local
processor 40 will initialize the other units on local bus 44.

The host processor will try to configure the PEB 12 and
SEB 19 by sending configuration cycles through the primary
interface of the PEB. The bridge 32 forwards the configu-
ration cycles directed to the primary PCI 48 of the SEB 19.
Configuration cycles in PCI are permitted only when an ID
select (IDSEL) signal is asserted. The IDSEL signal is
typically tied to particular address lines of the PCI bus which
ensure that it will be asserted if the cycle is a configuration
cycle. Primary IDSELs 58 and 68 are asserted for configu-
ration cycles within the PEB 12 and SEB 19, respectively.

With programmable bit 54 set, host processor configura-
tion cycles are prevented from entering the PEB 12.
Specifically, when host configuration cycles appear on pri-
mary PCI bus 38, the bridge 32 asserts a retry signal. The
retry signal indicates that the target (in this case the PEB 12)
is not ready to receive the cycles from the host processor. As
a result, the host processor releases the primary PCI bus 38
for a period of time and then comes back and attempts drive
configuration cycles into the PEB 12. The retry signal
requires the host to come back, but there is no limit to the
number of times the host processor can be forced to retry.
Thus, programmable bit 54 causes the host processor to be
retried indefinitely until programmable bit 54 is cleared.

5,835,784

5

Once the local processor 40 of SEB 19 has initialized the
local bus 44, it sets programmable bit 56 in secondary ATU
31 to claim a new address range from local bus 34. This
setting is performed by a configuration cycle through the
secondary PCI bus 35 of the PEB 12. To allow configuration
cycles along the PEB’s secondary PCI bus 35, a secondary
IDSEL signal 57 is provided. The secondary IDSEL is
asserted to allow the setting or clearing of programmable bit
56. The SEB 19 is shown with a secondary IDSEL 67 which
is unused in the configuration shown.

Claiming of the new address range is discussed more fully
below with reference to FIG. 4. Once bit 56 is set, SEB local
processor 40 clears programmable bit 55 via a memory
cycle, which causes the reset of local processor 30 to be
deasserted. Local processor 30 puts out initialization cycles
on local bus 34 which are claimed by secondary ATU 31
because programmable bit 56 is set. The secondary ATU 31
converts these local bus addresses to PCI addresses and
forwards them on secondary PCI bus 35. Primary ATU 49
claims these PCI addresses and translates them to the local
bus 44 where they are claimed by local memory 50. Local
memory 50 then forwards the necessary initialization code
to local processor 30 in the PEB 12. Once local processor 30
has booted and initializes the components local bus 34, SEB
local processor 40 clears programmable bit 56 returning
secondary ATU 31 to claiming its normal address range.
PEB local processor 30 then clear programmable bit 54 so
that on the next attempt, host configuration cycles will be
allowed to enter the PEB.

While FIG. 3 shows the PEB and the SEB having the
same architecture, the invention is not so limited. For
example, a local memory and processor could be provided
on the SEB primary PCI bus, thereby obviating the need for
the SEB primary ATU in this invention. If the PEB were
provided with an additional strapping pin to program pro-
grammable bit 56, the PEB local processor could boot from
a remote memory in the SEB without the aid of an SEB local
processor. Thus, with such additional strapping pin, the PEB
processor could boot from a memory on the SEB primary
PCI bus without additional support from other SEB com-
ponents. It is also possible for additional devices to reside on
either the local bus, one of the PCI buses, or both without
departing from the scope and contemplation of the inven-
tion. Notably, it is envisioned that the invention can be used
with the architecture described in 1960® RP Microproces-
sors Users Manual available from Intel Corporation publi-
cations division.

FIG. 4 shows a local bus address space for one embodi-
ment of the invention. The outbound translation windows
104 have been shown in an exploded view. The local bus
address space is divided in seven functional regional and
two reserved regions 101, 107. The functional regions
include internal data RAM 100, peripheral memory mapped
registers 102, ATU outbound direct addressing 103, ATU
translation 104, external memory code and data 105, initial-
ization boot record 106, and 80960 JX processor memory
mapped register space 108.

The invention deals primarily with the ATU outbound
translation windows 104, and the secondary boot translation
window 121. There are six outbound ATU translation
windows, three each corresponding to the primary and
secondary ATU’s. The six windows are Primary Memory
Window 109, Primary Dual Address Cycle (DAC) window
110, primary I/O window 113 and corresponding secondary
windows 111, 112, and 114, respectively.

In one embodiment of the instant invention, the address
range claimed for ATU translation is modified to allow the

10

15

20

25

30

35

40

45

50

55

60

65

6

secondary ATU to claim and translate addresses in the
secondary boot translation window 121.

Addresses falling within the outbound translation win-
dows 111, 112, and 114 are claimed by the secondary ATU
in the course of normal operation and translated to a PCI
address in a standard way. However, when bit 56 in the
secondary ATU is set, the secondary ATU also claims an
additional window 121. The additional window 121 claimed
includes a portion of external memory code/data 105, the
initialization boot record 106, reserved block 107, and the
memory mapped register space 108 at FE00.0000 through
FEFF.FFFFF. Unless this programmable bit 56 is set,
addresses within the initialization boot record 106 and
external memory window 120 placed on the local bus would
go unclaimed as there is no local memory which would
normally respond to this address range. It is not necessary to
claim windows 107 and 108 and the ATU could be config-
ured to claim all of external memory code/data window 105.
But establishing the secondary boot window 121 as dis-
cussed above simplifies decoding and implementation as 1)
any address above FE000000 is claimed, thus obviating the
need to check for an upper end, and 2) the number of address
bits decoded is reduced over claiming the expanded range.
Nevertheless, embodiments claiming a larger window and
those with an upper end limit are within the scope and
contemplation of the invention. Once the secondary ATU
claims an address of this secondary boot translation window
121, that address is translated to a PCI address and for-
warded over the cabled bus to the SEB and appropriate
initialization information will be returned as discussed pre-
viously.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will however be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are
accordingly, to be regarded in an illustrative rather than a
restrictive sense. Therefore, the scope of the invention
should be limited only by the appended claims.

What is claimed is:

1. A method of booting a first processor from a remote
memory unit comprising the steps of:

disabling the first processor from executing code;

preventing a host processor from configuring an environ-

ment of the first processor; and

configuring an interface unit between the first processor

and the remote memory to claim a local bus address
range corresponding to a local memory address range
from the local bus, including loading a value in a
register which causes the interface to translate
addresses in a predetermined way and setting a pro-
grammable bit, the set bit causing the interface to claim
an address range corresponding to the local memory
address range from the local bus.

2. The method of claim 1 further comprising

enabling the first processor to execute code; and

transparently retrieving boot code from the remote

memory to boot the first processor.

3. The method of claim 2 wherein the step of enabling
comprises the step of:

deasserting a reset signal to the first processor.

4. The method of claim 1 wherein the step of disabling
comprises the steps of:

receiving a reset signal; and

maintaining a processor reset signal to the first processor.

5,835,784

7

5. The method of claim 4 wherein the step of disabling
further comprises the step of:

setting a bit in a control register.
6. An apparatus comprising:

a first processor coupled to a local bus;
a bridge electrically isolating a first and a second bus;

an address translation unit coupled between the second
bus and the local bus;

a programmable bit such that when the bit is set to a
predetermined value, the address translation unit claims
cycles directed to a local memory; and

means for preventing access to the apparatus by configu-

ration cycles of a host processor.

7. The apparatus of claim 6 wherein the means for
preventing comprises a state machine having a retry state
which issues a retry command to the second processor, the
retry state being entered any time a retry signal is asserted
simultaneous with a primary reset signal.

8. The apparatus of claim 6 further comprising:

means for disabling the first processor from executing any

code.

9. The apparatus of claim 8 wherein the means for
disabling is a control register which maintains a reset signal
to the processor until a predetermined bit is cleared.

10. An apparatus comprising:

a first processor coupled to a local bus;

an address translation unit (ATU) coupled between the
local bus and an I/O bus, the ATU claiming one of a first
address range or second address range from the local
bus wherein the first address range corresponds to
outbound I/O transactions and the second address range
corresponds to local memory transactions, the second
address range claimed responsive to setting a program-
mable bit; and

8

a control register which holds the first processor in reset
as long as a first predetermined bit is set, the register
preventing a host processor configuration cycle from
entering the apparatus while a second predetermined bit

5 is set.

11. The apparatus of claim 10 wherein the control register
is disposed in a bridge unit, the bridge unit bridging between
a primary I/O bus and a secondary I/O bus.

12. A system comprising:

a first processor environment having no boot memory and

a second processor environment having a boot memory,

the first and second environments coupled together by

a cabled bus; wherein the first and second environments

each include:

a processor coupled to a local bus;

15

a bridge coupled between a first and a second bus;

an address translation unit coupled between the first bus

0 and the local bus;
a second address translation unit coupled between the

local bus and the second bus;

and wherein the second processor sets a programmable bit
in the first processor environment causing the second
address translation unit of the first environment to
claim an address range including boot cycles of the first
Processor.

13. The system of claim 12 wherein a state machine
prevents a host processor configuration cycle from entering
30 the first processor environment until the first processor has

fully booted.

14. The system of claim 12 wherein a state machine
maintains a processor reset signal to the first processor until
the second processor environment is fully booted.

